SmartMedia Tools: Bridging the Gap Between Generic
Applications and Domain-Oriented Systems

Marcus Stolze
Tamara Sumner

CU-CS-792-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

SmartMedia Tools: Bridging the Gap Between Generic Applications and
Domain-Oriented Systems

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

SmartMedia Tools:
Bridging the Gap Between Generic Applications
and Domain-Oriented Systems

Markus Stolze

Tamara Sumner

Department of Computer Science and the Center for LifeLong Learning and Design
University of Colorado
Boulder, CO USA 80309-0430
Email: [stolze, sumner]@ cs.colorado.edu

ABSTRACT

Our intuitions regarding the usability and utility of generic
versus domain-specific applications may be too simplistic.
Empirical studies indicate that professional practitioners
need both: (1) the rich, flexible formatting and editing
features associated with generic tools, and (2) the supportive
functionality offered by domain-specific tools. The problem
is that today’s tools are either generic (and flexible) or
domain-specific (and suppeortive), but not both.
SmartMedia Tools change this situation by supporting
practitioners to bridge this gap and work at different points
along the flexibility / support continuum. SmartMedia
Tools enable practitioners to begin with generic graphic
elements and to gradually enrich SmartMedia with domain-
specific vocabularies and relationships using graphical
refinement, naming, prototype definition, and attribute
refinement.

KEYWORDS: Domain-specificity, End user modifiability,
Generic Applications, Incremental Formalization,
Tailorability, Task-specificity

INTRODUCTION

Many HCI researchers have advocated the benefits of domain
or task-specific systems over generic software applications
[4, 11, 14]. Domain-specific systems embody a model of
the entities to be manipulated and the tasks to be performed
and use the model to provide active support to the user. An
example is a kitchen design environment enabling users to
construct floorplans from objects such as cabinets and
stoves, which can then be analyzed by the system for
compliance with design guidelines [6].

Generic applications like word processors, graphics
packages and databases do not focus on a particular task or
domain. Instead, these applications support the creation and
manipulation of a particular type of representation, such as
documents or drawings, by providing a wide range of
formatting features and flexible editing commands.

Domain-specific software is believed to be more useful and
usable than generic software because users interact with
familiar entities and do not need to build up domain entities
from other lower-level operaticns [6, 10, 11, 14]. However,
recent empirical studies indicate that these intuitions and
even the dichotomy between generic versus domain-specific
may be too simplistic.

Nardi and Johnson found that domain-specific software is
often too rigid and limited to support the rich set of tasks
that professionals need to perform [12}. In their study,
professional slidemakers preferred collections of generic
graphic tools to slide making-specific software because of
the generic tools’ greater power and flexibility. However,
preferences for generic, domairn-specific, or a combination
of both types of tools were highly dependent on the user’s
specific goals, which varied widely.

Sumner studied the use of collections of generic
applications by design communities {18, 19]. She found
that practitioners were using generic applications in very
domain-specific ways. Over time, design communities
created graphic vocabularies for expressing important
domain concepts and well-defined representations for
making important concepts and relationships visible. She
observed that the flexibility and formatting features of the
tools enabled designers to continually evolve their
vocabularies and representations to better support changing
work practices. However, her analysis showed that the
tools’ generic nature had several negative side effects such
as introducing cognitive and manual burdens on
constructing and maintaining designs and hindering iterative
design.

As these findings indicate, the question of whether generic -
or domain-specific software is better suited for many areas
of professional practice is too simplistic. In fact, what
many practitioners need are tools that bridge the gap
between these two extremes by combining elements of
both. Specifically, tools need to provide: (1) the rich,
flexible formatting and editing features associated with
generic tools, (2) the supportive functionality offered by
domain-specific tools, and (3) computational mechanisms
that support bridging the gap between these two endpoints.

Towards this end, we have created SmartMedia Tools
enabling practitioners to work continuously along a

spectrum of generic (flexible) to domain-specific

(supportive) graphic representations. SmartMedia enables’

practitioners to begin with generic graphic objects and to
gradually enrich their tool with domain-specific
vocabularies and relationships.

This paper begins by reviewing empirical findings to derive
design requirements for SmartMedia Tools. Next, a scenario
illustrates how SmartMedia enables practitioners to enrich
generic tools with domain-specific concepts. Finally, we
compare this approach with other work in the areas of end
user tailoring and incremental formalization and discuss the

implications of SmartMedia for group work practices.

HOW TO BRIDGE THE GAP? DERIVING
REQUIREMENTS BY EXAMINING PRACTICES

We are specifically interested in providing tools to support

designers working in domains such as user interface design

and software design. In our studies of three such design -

communities, workplace observations, interviews,
videotape analyses, and analyses of design representations
and tools, were used to understand long-term changes in
design practices and representations [18, 19]. The major
result revealed how design communities gradually construct
and evolve their domain over time by defining important
domain objects, creating and evolving representations for
viewing these objects, and establishing relationships
between objects and representations. The observed design
process was labeled domain construction.

Domain construction both illustrates the need to bridge the
gap between generic and domain-specific systems and offers
insights into how systems might achieve this. Key findings
from these studies — designers gradually evolve specialized
representations, domain objects at different levels of
.explicitness are intermingled, evaluating and transforming
design representations is difficult — have determined
requirements for tools to support the observed domain
construction process. These findings are reviewed here to
motivate design requirements for SmartMedia Tools.

Finding #1: Designers gradually evolve
specialized representations.

Similar to others [2, 9], we observed that designers rely
heavily on diagrammatic, pictorial, and other forms of
visual representation (see Table 1). However, standard or
pre-defined representations were not used. Rather, these
designers considered communicating the evolving design to
other design stakeholders as a crucial part of their job and
continually tried to define new and improve existing
representations to enhance the communication process. As a
result, all communities ended up creating specialized design
representations tailored to their particular needs (see Table

1).

These representations evolved as designers continually
refined their form and their content. What was particularly
striking was the interplay between refining form and
content; the two were inseparably interwoveén. Often,

designers would begin to refine parts of the representation

by changing graphical elements such as font, color, shape,
or position. These refinements served to make previously

implicit or tacit information visible and explicit to
themselves and other stakeholders.

Table 1: Evolution of domain representations and objects in
three user interface design communities.

Comm | Evolution of # Objects

-unity | Representations | Graphic Explicit Formal

1 Unstructured text 3 0 0
Structured text + 9 6 5
Tables 7 5 0

2 Graphic templates +| 4 0 0
Hypermedia outline 5 5 4

3 Text + 5 5 0
Simple tables 5 4 0
Initial flow charts + 5 4 0
Complex tables 13 13 13
Later flow charts + 9 7 0
Complex tables 15 14 14

-reintroduced (i.e.,

Some of these graphical refinements concerned the structure
of representations. For instance, community 1 started out
using unstructured text design representations. This
representation eventually became very structured as
graphical delimiters and other markings were introduced that
later evolved into explicit subcomponents.

Many of these graphical refinements changed the content of
representations by introducing new domain objects or
modifying existing domain objects. Typically, new
representations contained few, if any, explicitly represented
domain objects. Over time as stakeholders interacted, these
representations became populated with more domain
objects, often depicted at greater levels of detail. As an
example, the initial flow chart representation used by
community 3 depicted only five domain objects, while later
versions of the flow chart representation depicted nine
objects (see Table 1, # Objects Graphic column). What was
particularly interesting was the process by which domain
objects came into being. Rarely did designers decide they
needed a “menu” or some other object and then proceed to
define that object in detail. Instead, domain objects and their
parts emerged gradually while refining existing
representations.

Figure 1 shows three stages in the graphic evolution of a
voice menu representation used by community 3. The
representation on the left is a “simple phrase table” used to
represent any system action, not just voice menus, that
expect a user response. Font size, font style, and position
are used to distinguish parts of a menu such as the title,
phrase, possible actions, and expected system responses.
The representation in the middle shows the first pass at a
graphic representation specifically for voice menus. This
node from the initial flow chart representation distinguishes
parts such as identifiers (PO.01), titles, and legal commands
(1, security code). The representation on the right shows a
refined voice menu representation. New parts have been
the phrase) and parts have been
graphically-and semantlcally refined (i.e., the shaded title
1nd1cates the utle is spoken in the mterface) -

| Personal Options Menu: P!

P (5 Deronnl Oplons e code, press 1. To change
Techmge you rocaded s, pote 2. PO.OL your recorded name, press
To disscameet, poess + - 2. To disconnect, press *.

ucrion | mxeacTED RESPONSE JO0TO Personal Options

pauecot §"Are you still there? ™ B .
[Ty ot]

= = E:— 1 Sccm‘ﬂy Code et Security C?de O

ET_I, Cew——r— vy 2 Greeting Greeting m
ocoret oy T P Biceooec: TEY

F:'—m - Discormect I Disconnet g

Figure 1: Graphic evolution of a voice menu representation.

These observations indicate that tools providing a canned
model of a particular type of design representation could not
accommodate the changing communication needs of these -
communities. Instead, tools need to provide the flexible
editing commands and rich formatting features typically
associated with generic applications to support the observed
graphic refinement process.

Finding #2: Objects at different levels of
explicitness are intermingled.

Graphic refinement was not the only way these designers
evolved their representations. Sometimes additional steps
were taken to make the objects present in the
representations more explicit. The “# Objects” column in
Table 1 identifies three levels of explicitness found in the
design representations. As discussed in the previous section,
the refined domain objects minimally had a distinguishable
graphic look (see “graphic” column).

Many times after graphically refining an object, designers
would also create a name for the object. Naming objects
served communication needs by helping to ensure that
- stakeholders were, literally, referring to the same graphic
object. Some names were implicit (i.e., only used in
conversation) and some were explicit. By our definition,
names are only explicit when there is some written key or
other record explaining that items with a particular look and
parts have a specific name. Explicit names helped ensure
consistent interpretation of design representations by all
design stakeholders.

In some cases, a subset of the named, explicit objects were
formalized even further (see “formal” column). Shipman
defined formalization as the process of “identifying
machine-processable aspects of information” such as types,
attributes, and values [17]. In some cases, designers had
enriched their tools with awareness of some of their classes
or types of domain objects by defining (1) name <->
graphic look mappings and (2) part <-> whole relationships
(i.e., attribute <-> class relationships). One benefit of such
formalization was that it promoted the consistent
production of design representations by allowing previously
defined objects to be reused when creating new
representations. However, this benefit only seemed to be
taken advantage of when the system being used made named
classes directly available as reusable palette items; i.e.
integrated into the system’s standard generic tool selection
instead of being in a separate toolbar or area.

We also observed that even after objects had been formalized -

(made machine-processable), their evolution was not over. -

Designers continued to refine both the look and content of
formalized domain objects by adding new attributes,
modifying existing attributes, and removing attributes. As
the voice menu example shows (Figure 1), evolution was
not a simple, linear march towards progressively elaborate
objects. Many steps focused on simplifying existing
representations by removing or refining existing attributes;
e.g., the “phrase” attribute in the table representation (left)
did not appear in the initial node representation (center).

These observations point to several mechanisms that tools
must provide to enable practitioners to bridge the gap
between generic and domain-specific systems. First,
systems must allow practitioners to name classes of domain
objects. Second, defining classes should follow the
prototype definition model. In this object model, an
existing object instance is used as a template for creating
the desired class. Third, once a class has been created, it
should be available for reuse in the system’s standard
palette. That is, systems should support mixed palettes
intermingling objects at different levels of explicitness.
Finally, systems need to provide an underlying object
model that is flexible enough to allow already defined and
used object classes to continue to undergo attiribute
refinement.

Finding #3: Evaluating and transforming design
representations is difficult.

Designers did not simply construct representations, they
also evaluated representations to see if various design or
project goals were being met by the artifact being
constructed. Evaluation refers to the activity of analyzing a
representation to see if it conforms to various criteria and
constraints [1]. For instance, the designers in community 3
continually evaluated their design representations for
compliance with existing user interface guidelines. These
designers used a combination of visual inspection and
mental simulation to aid in their evaluation process. For
experienced designers or small designs, these practices
worked fine. However, as designs grew large and complex,
relying on visual inspection became increasingly
problematic as important features and relationships became
difficult to spot. Also not all designers are equally
experienced; many newly hired designers lacked detailed
knowledge of the interface guidelines thus did not know
some of the relevant criteria. Thus, as noted by others [1,
8], relying solely on experience and practices is fraught
with potential error and designers need tools that support
their evaluation activities.

The basic design process followed by these communities
was construct-evaluate-iterate. In all communities, a single
design representation was insufficient to support this
process (see Table 1). As noted by Norman, a good
representation emphasizes the important objects and
relationships and de-emphasizes the less important things
[13]. However, there are many important aspects of any
particular design and no single representation can show
them all equally well. Thus, these communities created

“multiple representations that made different aspects of the
‘design more visible and readily apparent. Besides serving -
- visual inspection and evaluation activities, multiple

Make Object Representations Avallable and Inspectable

Mixed Palettes

tion and ic Information

Graphic Refinement

Name Classes

From
Generic...

Prototype Definition Atiribute Refinement

Evaluation Functions

i o -
ik Domain-Specific

Visual Interaction Layer Presentation Description Layer Semantic Description Layer
Meris Mens
5! s « Rectt « MenuName: *Personal Options®
your security - Color: Gray * Prompt: To change your security...”
code, press 1. To change - Textt . . Op“?rg dont
rded name Value: *Personal Options' P
YOur [acol j Posttion: Canter OptionName: "Security Code"
press 2. To disconnect, « Rect? OptionKey:
press *. - Textt - Option2
i 3 L OptionName: “Greeting”
Security Code >) OP'X'.];;ue. “To change your securlty. Pt
Greeting Textt: - Options !
Value: Securlly Code Opl!onName: “Disconnect”
Disconnect Numbert: t OptionKey: *

Figure 2: The SmartMedia architecture consists of three layers: a visual interaction layer providing standard
drawing tools, a presentation description layer, and a semantic description layer. Special editors are provided

for modifying object descriptions.

representations were sometimes created to facilitate
iterative, collaborative design. For instance, the lead
designer in community 2 created the hypermedia outline
representation to make it easier to modify the textual parts
of the design during collaborative design sessions with
other stakeholders.

However, multiple representations created a transformation
burden; i.e., members in all communities reported that
going back and forth across the representations was hard
work, both manually and cognitively. The problem
stemmed from the highly interrelated nature of the
representations. These representations shared many of the
same domain objects; thus making changes in one
representation required making changes in the related
representation to maintain design consistency. Two design
communities reported that this transformation burden
negatively affected their iterative design practices. The
problem was that the tools used by the designers did not
support them at all in either locating related objects or
maintaining consistency across representations. This lack of
support occurred both when using different tools to create
the different representations and when using the same tool
to create the different representations.

The design communities we observed were all using generic
software applications to create their design representations.
Earlier, we saw that these tools offered many positive
affordances such as graphical refinement. Some tools went a
little further and supported designers to enrich tools with
some awareness of important domain objects using
techniques such as naming, defining classes, and mixed
palettes. For the most part, where tools offered this
functionality, designers took advantage of it.. However,
none of the graphics packages used by these communities
supported this level of enriching. As discussed previously,
all these tools broke down when it came to supporting
aspects of their practices such as evaluation and
transformation activities. These design communities could

have benefited from many of the active support mechanisms

associated with domain-specific tools.

Specifically, tools must enable practitioners to take the
next step and further enrich their domain objects with
behaviors and evaluation functions to support mental
simulation and evaluation activities. This requires making
the domain object definition available for inspection and
modification. As the transformation examples indicate, the
domain object definition also needs to be accessible to other
tools. However, since the essence of the transformation
process is to change the visual representation of aspects of
the domain objects, presentation information needs to be
separate from semantic information. This separation is
necessary to support graphic refinement processes on the
same domain object in multiple representations.

In summary, we have enumerated several design
requirements for systems to bridge the gap between generic
applications and domain-oriented systems. The following
two sections will show how these requirements are reflected
in the design and use of SmartMedia tools.

SMARTMEDIA TOOLS: TOWARDS SYSTEMS
THAT ARE BOTH FLEXIBLE AND SUPPORTIVE
We have developed a series of SmartMedia Tools [15]
combining positive aspects of both generic and domain
specific applications. The goal is to make systems that are
both flexible and supportive by turning the current
dichotomy of generic versus domain-oriented systems into a
seamless continuum. Towards this end, SmartMedia Tools
embody a specialized architecture and corresponding tools
for refining domain objects both graphically and
semantically (see Figure 2).

In generic graphics applications like MacDraw! and
flowcharting tools like Inspiration!, graphics objects can be

- accessed and manipulated only at the visual interaction layer

using direct manipulation. Similar to these applications,
SmartMedia Tools also provide a visual interaction layer
supporting the direct manipulation of graphic objects.
However, graphic objects in SmartMedia tools have two
additional user-accessible representations: a system-supplied
textual description of the object's presentation in the

interface (the "presentation description”) and a user-definable
textual description of the object's meaning in the domain

Flle Edit UIew Furmat Symbol Link Effect Utility Window

SmartMedia DoiceMail Flowchart ==——+-—"—

k
T:
= POOL
N - PO02 PO.c3
(] Personal Options
e "Choose a security code that 4 Toart 4
L sourity Cods ’ is sasy for youto remsmber. v
i 18 X Erter the new security cods xgg‘;,
Menu | ge| 2 Cresting now, then press # ’
E # Disconnect
Msq.
ol
Promt
[]
Deci.
0 MerwNams:
© Position: 20, 10 o wp —_—
o Valug: "Personal Options, o optwnfrsonalcpﬁons 2
Dia| B T esition: 20, 30 o "1 Security Cods 5 2 Gresting % * Dt
O Value: = =
B "1 Security Code $ 2 3
O Linel
o Postion: 20 30

Flgure 3. SmartMedia Flowcharung tool after initial tailoring (i.e., graphic to

explicit transition).

(the "semantic description”). The presentation description
summarizes the visual properties of objects (e.g. shape,
size, color) and the semantic description specifies the
domain-specific meaning of a graphic object (e.g. that a
number represents a menu command). This description is
saved for use by other applications in an open, object-
oriented database.

Special editors are provided that enable users to inspect,
extend, and modify the object descriptions directly.
Relationships between parts of the presentation and
semantic descriptions, such as evaluation functions, can be
defined using spreadsheet-like functions. The representations
are integrated in that changes in any of the object
representations are reflected in all other object
representations. Thus, changes performed by direct
manipulation in the visual interaction layer are mirrored in
the object’s presentation description. At any time, users can
select a graphic object in the visual interaction layer and
define a class based on its properties. Once defined, objects
are available in the palette for future reuse.

The SmartMedia architecture enables SmartMedia Tools to

seamlessly support the transition of domain objects from

graphic to explicit to formal objects. SmartMedia Tools
meet the requirements developed in the previous section in
the following ways:

* Graphical refinement is supported by offering the
general functionality of graphics packages and a palette
supporting the reuse of previously defined domain
objects.

~» Naming and the incremental formalization of graphic
objects is supported by prototype definition and the
integrated presentation and semantics object editors.

_* The definition of user-defined analyses and
' transformations functions is supported through

spreadsheet-like functions as well as by making the
semantic object descriptions open and accessible to
other external applications.

In the following section, we will use a fictional scenario to
illustrate this functionality in a concrete context.

SCENARIO: USING AND EVOLVING
SMARTMEDIA

In this scenario, we use voice dialog design as our example
domain. Voice dialog applications are systems with phone-
based interfaces such as voice mail systems. Our scenario is
informed by Sumner's empirical study of designers working
in this domain [19]. She described how designers of voice
dialog applications continually adapted and improved their
design representations. Here we will discuss how a
SmartMedia Tool could have supported these designers to
develop and evolve domain-oriented design support tools in
parallel with their design representation.

Stella is a designer of phone voice dialogs at a major phone
company. Until recently, she was using a textual
description of the voice dialog interface as her design
representation. However, this textual representation was
getting unworkable for the larger designs she is working on
now. From a previous job appointment, Stella has some
experience using flow charts as a design representation.
Stella uses a SmartMedia flow charting tool for
experimenting with the new representation.

From implicit drawings to explicit design objects
Initially Stella uses the generic flowcharting functionality
of the tool to produce her designs; i.e., she uses the
provided boxes, ovals and arrows as her design objects.
Doing these designs, she experiments with using different
shapes for different interface components. Over time; she .
gains confidence that flowcharts are an appropriate

File Edit Uiew Format Symbol

Lm;: Effect utmty wlndow

& Posttion: Center
0 Rect2
4]

13
¥

T3 PO.02
—\-—« Choossasecurty codetha
J To change your security is easy for youto remember.
Lirk code, press 1. To changs Enter the new security cods
+ your recorded namme, press now, then press #
'2’;".1’ 2. To disconnect, press *.
FEg.|
=2
Prmt
[Feng]
Dedi.
sl

hput

a

a {ti {§¥alus SE Self too-toany-options)
H 4] Retti
Diagrai Color: Gray
O Texal

= Valus: “Personal Options™

4] Opnonz
o Opﬂonllams “Grasting'

Flgure 4. SmartMedia tool after more tailoring (i.e., explicit to formal

transition).

representation for the design of voice dialogs. Stella
inspects her previous designs and detects that she is
implicitly distinguishing domain-specific entities like voice
menus, messages, and decision points. While doing the
designs she was relatively consistently using different

visual formats for each of these concepts, but she was not _

explicitly classifying the objects or labeling their
subcomponents. Stella decides to adapt the tool to reflect
the specific objects and operations she has evolved to better
support her design practices (see Figure3).

When creating new objects, Stella has to minimally define
the presentation description and, optionally, the
corresponding semantic description. For example, in her
previous designs, Stella had graphically distinguished that
voice menus had three subcomponents or parts: a menu
name, a prompt, and options. She uses a voice menu from
an existing design as a prototype for presentation
description part of the class definition (see Figure 3, top left
and bottom left). Parallel with the presentation description,
Stella also defines the corresponding semantic description.
She specifies that 'menu’ objects have attributes like the
menu name, the prompt and options (Figure 3, bottom
right). The newly defined object is added to the system
palette (Fig. 3, top left) and can now be used to create
future designs more consistently.

From explicit to formal design objects

During the following weeks, Stella uses the newly defined
objects for producing her designs. She also discusses her
new design representation with her colleagues, customers
and sub-contractors. In response to various problems and
suggestions, Stella iteratively evolves and refines the
presentation ‘and the semantic description of the domain
objects, and she also introduces the 'input’ object as a-new
palette item. The result of this transition from explicit to

formal domain objects is shown in Figure 4. The graphic
look of domain objects has been elaborated to show more
information in a way that emphasizes the important
elements.

Also the semantic description has also been elaborated on
further. The semantic information about the menu has
become more structured through the introduction of new
attributes (see Figures 3 and 4). Also new computed
attributes were introduced in the semantic description (e.g.,
the too-many-options attribute) and the presentation
description was extended using spreadsheet functions so that
changes in the semantic description are automatically
reflected in the interface of the visual interaction level.

DISCUSSION

In the previous scenario we have shown how a designer
extended and adapted a SmartMedia tool that initially only
offered generic flowcharting functionality to give domain-
specific support in the context of voice dialog design. The
domain-specificity resulted from the definition of palette
items which are customized to reflect important concepts in
the domain ~ visually (through the visual interaction layer),
semantically (through the semantic description layer), and
computationally (through evaluation functions and
transformation by external applications). While the
empirical evidence presented earlier indicates the validity of
this approach, several 1mportant questions need to be
considered:

e How is the SmartMedia approach different from
existing forms of end user tailoring found in other
commercial and research applications? -

e Will practmoners tailor in the way we have descrxbed"

* - Will providing this flexibility negatively impact group
work practices by promoting divergent practices?

Comparison to other approaches

We use “tailoring” to refer to the entire range of adaptations
supported by SmartMedia; i.e., from graphical refinement
to the definition of evaluation functions. This approach to
end-user tailoring is different. from the kind of tailorability
that can be found in applications like Word!, Emacs, and
Excell. This should not be too surprising because
SmartMedia tools focus on supporting the definition of
domain-specific graphical design representations. These
applications are focused on document production and tabular
analysis; to our knowledge, there are no commercial
graphical applications supporting similar levels of end-user
tailorability. Thus SmartMedia tools can be seen as a
proposal on how graphic applications should be made end-
user-tailorable. Still there exist similarities, as well as
differences in the tailoring facilities provided.

A key difference with commercial applications is
SmartMedia’s focus on enriching tools with awareness of
domain objects. Word, like SmartMedia tools, supports the
naming of objects (i.e. paragraphs) and the mapping of
names and visual appearance through the definition of
"styles.” This, however, is all the domain-oriented
information that can be attached to a paragraph. Word does
not enable users to specify that domain objects may have
multiple subparts or to associate domain-specific behaviors
or functions with defined objects. Emacs is another example
of an editor that offers many opportunities for tailoring.

However the approach to customization is very different -

from the one used in SmartMedia tools. Customization in
Emacs consists of the re-definition of standard functions and
the definition of new functions. Emacs does not support the
naming of objects, nor does it support the creation of user-
defined palettes. Excel and other spreadsheets support the
naming of cells and regions and the definition of functions
that use this information. However in spreadsheets, only
instances can be named, not classes of objects. Thus,
palettes of domain objects cannot be created and there is no
support for creating design representations by combining
reusable building blocks.

Several researchers have investigated end-user modification
and programming in the context of building more flexible
design environments [3, 5, 17]. Modifier provides a special
interface and knowledge-based assistance to support
designers to add new domain objects to their design
environment [S]. Programmable design environments
provide a domain-enriched dialect of Scheme that enables
designers to define new domain objects and operations on
the objects [3]. Both approaches differ from SmartMedia in
that they require designers to explicitly formalize domain
knowledge; i.e., render it machine-processable, before it can
be used. That is, they do not enable designers to
incrementally formalize domain objects during use.

The most similar approach is that of Shipman [16, 171,
who pioneered many ideas and techniques associated with
incremental formalization. In many respects, we follow in

the footsteps of these ideas. However, there are important

differences in both emphasis and approach, Shipman
-emphasizes using incremental formalization to support
hypermedia knowledge-base evolution, not the development

of domain-specific graphic design representations. He has

focused more on providing computational mechanisms that

scan for either textual or graphical patterns and suggest

possible formalizations to the user. We have focused more

on looking at how people incrementally formalize in

practice and providing functionality that supports these -
practices. We feel that these two approaches are

complementary and that, ultimately, both are needed.

Will practitioners tailor as described?

In the end, this is an open question to be answered by
observing SmartMedia in use. However, our studies of
design communities indicate that there is a need for this
type of tailoring and that forms of it are already occurring to
some extent. We also include two other observations as
promising indications. First the motivation seems to
already be present as we observed how these communities
continually strive to improve upon their existing practices,
and in many cases also their tools. Second, all three design
communities had individuals who had taken on local
developer roles [7]; thus an organizational infrastructure is
already present to support further tailoring activities.

impact on group work practices

Many people are concerned that providing such extensive
tool tailorability will negatively impact group work
practices. In many groups and organizations, smooth
functioning depends on shared conventions, tools, and
practices. A primary concern is that practitioners will tailor
their tools in radically individualized ways and this will lead
to diverging, and even chaotic, work practices and working
environments. These are valid concerns that, again, will not
be fully understood until we have observed SmartMedia
tools in use over a long period of time. However, we
believe that this is an unlikely outcome; that instead, tool
tailorability promotes convergence in work practices. For
instance, Trigg and Bodker studied a work group tailoring
Word Perfect to support their work practices [20]. They
found that over time, systematization emerged as the group
took advantage of the tool’s tailorability to co-evolve their
tools and work practices. As another example, the three
design communities we observed were using generic off-the-
shelf applications which offered hundreds of features and
many forms of customization. These communities had
plenty of opportunities to diverge. However, they did not.
Instead we saw convergence, as they enriched their tools and
evolved practices to promote the production of shared,
standardized design representations.

IN SUMMARY

‘We observed that the dichotomy between generic or domain-

specific software is too simplistic for many areas of
professional practice. Instead, many practitioners, such as
designers, need SmartMedia Tools enabling them to work
continuously along this spectrum. An analysis of three
design communities was used to derive design requirements
for SmartMedia tools and a scenario was used to illustrate
how SmartMedia features fulfill the stated requirements.
SmartMedia Tools enable practitioners to gradually enrich
generic graphics tools with domain-specific knowledge to
support the ‘creation and analysis of specialized-design
representations. During tool use, generic graphic objects.are

incrementally formalized through processes of graphic
refinement, naming, prototype definition, and attribute
refinement to better support evolving work practices.

ACKNOWLEDGMENTS

We thank the L3D group at the University of Colorado for
providing a rich history of thinking on these issues and a
ready forum for further discussions. We particularly thank
Stefanie Lindstaedt, Jonathan Ostwald, and Kurt Schneider.
This research was supported by ARPA under grant No.

N66001-94-C-6038.

1 Product Credit and trademark notifications for the products
referred to are given here: Excel and MS Word are registered
trademarks of the Microsoft Corporation. MacDraw is a
registered trademark of the Claris Corporation. Inspiration is a
registered trademark of the Inspiration Software Corporation.

REFERENCES

1. Bonnardel, N., “Criteria Used for Evaluation of
Design Solutions,” Designing for Everyone and
Everybody (Proceedings of the 11th Congress of the
International Ergonomics Association), Paris (July),
1991.

2. Curtis, B., H. Krasner and N. Iscoe, “A Field Study
of the Software Design Process for Large Systems,”
Communications of the ACM, Vol. 31, pp. 1268-
1287, 1988.

3. Eisenberg, M. and G. Fischer, “Programmable
Design Environments: Integrating End-User
Programming with Domain-Oriented Assistance,”
Human Factors in Computing Systems (CHI ‘94),
Boston, MA (April 24-28), 1994, pp. 431-437.

4. Fischer, G., “Domain-Oriented Design
Environments,” in Automated Software Engineering,
Ed., Kluwer Academic Publishers, Boston, MA,,
1994, pp. 177-203.

5. Fischer, G. and A. Girgensohn, “End-User
Modifiability in Design Environments,” Human
Factors in Computing Systems (CHI’90), Seattle,
WA (April 1-5), 1990, pp. 183-191.

6. Fischer, G. and A. C. Lemke, “Construction Kits and
Design Environments: Steps Toward Human
Problem-Domain Communication,” HCI, Vol. 3, pp.
179-222, 1988.

7. Gantt, M. and B. Nardi, “Gardeners and Gurus:
Patterns of Cooperation Among CAD Users,”
Human Factors in Computing Systems (CHI ‘92),

- Monterey, CA, 1992, pp. 107-117.

8. Guindon, R., “Requirements and Design of
DesignVision, An Object-Oriented Graphical Interface
to an Intelligent Software Design Assistant,” Human
Factors in Computing Systems (CHI ‘92), Monterey,
CA (May 3-7), 1992, pp. 499-506:

9. Guindon, R, H. Krasn'er‘and B. Curtis, “Breakdowns
and Processes During the Early Phases of Software

Design by Professionals,” in Empirical Studies of -

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Programmers: Second Workshop, G. Olson. S.
Sheppard and E. Soloway, Ed., Ablex Publishing
Corporation, Norwood, New Jersey, 1987, pp. 65-82.

Lewis, C. and G. M. Olson, “Can Principles of
Cognition Lower the Barriers to Programming?.”
Empirical Studies of Programmers: Second
Workshop, 1987, pp. 248-263.

Nardi, B. A., A Small Matter of Programming, The
MIT Press, Cambridge, MA, 1993,

Nardi, B. A. and J. A. Johnson, “User Preferences for
Task-specific vs. Generic Application Software.”
Human Factors in Computing Systems (CHI ‘94),
Boston, MA (April 24-28), 1994, pp. 392-398.

Norman, D. A., Things That Make Us Smart,
Addison-Wesley Publishing Company, Reading,
MA, 1993.

Repenning, A. and T. Sumner, “Agentsheets: A
Medium for Creating Domain-Oriented Visual
Languages,” IEEE Computer (Special Issue on
Visual Programming), Vol. 28, pp. 17-25, 1995.

Schneider, K. and M. Stolze, “SMArT CASE:
Supporting Co-Improvement of Process, Tools, and
Notations,” Submitted to: International Conference
on Software Engineering (ICSE-18), Berlin, Germany
(March 26-30), 1996.

Shipman, F. M., C. C. Marshall and T. P. Moran,
“Finding and Using Implicit Structure in Human-
Organized Spatial Layouts of Information,” Human
Factors in Computing Systems (CHI *95), Denver,
CO (May 7-11), 1995, pp. 346-353.

Shipman, F. M. and R. McCall, “Supporting
Knowledge-Base Evolution with Incremental
Formalization,” Human Factors in Compuiing
Systems (CHI ‘94), Boston, MA (April 24-28),
1994, pp. 285-291.

Sumner, T., “Designers and their tools: Comparing
two models of design support systems,” University
of Colorado at Boulder, Ph.D. dissertation, Dept. of
Computer Science, 1995.

Sumner, T., “The High-Tech Toolbelt: A Study of
Designers in the Workplace,” Human Factors in
Computing Systems (CHI ‘95), Denver, CO (May 7-
11), 1995, pp. 178-185.

Trigg, R. and S. Bodker, “From Implementation to
Design: Tailoring and the Emergence of
Systemization in CSCW,” Conference on Computer

- Supported Cooperative Work (CSCW “94), Chapel

Hill, North Caroline (October 22-26), 1994, pp. 45-
54.

